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EXECUTIVE SUMMARY 
 

Resilient modulus (MR) of base course material is an important material input for 

pavement design. In Alaska, due to distinctiveness of local climate, material source, 

fines content and groundwater level, resilient properties of D-1 granular base course 

materials are significantly affected by seasonal changes. The presence of fines (P200) 

affects frost susceptibility of base materials and controls the aggregates’ ability to 

support vehicular load, especially during the spring-thaw period. To systematically 

evaluate the impact of fines content on the resilient properties of D-1 base course 

materials with varied fines content, gradation, moisture content and temperature 

during thawing and provide regression coefficients ki which are required for the 

flexible pavement design, a laboratory investigation was conducted on D-1 materials 

from Northern, Central, and Southeast Regions of Alaska Department of 

Transportation and Public Facilities (AKDOT&PF) at different temperatures, 

moisture and fines contents. 

Tests were conducted first to determine physical properties such as gradation, 

optimum moisture content (OMC), maximum dry density, abrasion resistance, and 

flat or elongated particles of D-1 materials from three regions.  

MR data were determined by conducting repeated triaxial tests on D-1 materials 

with fines content ranging from 3.15% to 10% and moisture content from OMC-2% 

to OMC+0.7%, respectively. Permanent deformation data on aggregate specimens 

were collected from MR tests as well. For MR tests at subfreezing temperatures, a frost 

heave cell was designed and fabricated for specimen preparation. To simulate the 

natural frost heave in winter, aggregate specimens experienced a freezing process by 

using frost heave cell. The designed frost heave cell is an open system which allows 

free water intake during freezing process. Frost heave data and change of moisture 

contents after the freezing process were obtained from frost heave tests. MR tests were 

also conducted on aggregate specimens after the freeze-thaw cycle. However, most of 

specimens collapsed during testing which indicated significant loss of MR after the 

freeze-thaw cycle. 

After the freezing process in the open system, aggregate specimens with low 

initial moisture and high fines content led to higher final moisture contents. Most of 



  iv 
  
 

  

frost heave values were less than 3 mm for D-1 materials with fines contents ranging 

from 3.15% to 10%. Frost heave increased with increases of fines content after the 

freezing process which could also be affected by initial moisture contents of aggregate 

specimens. MR tests results showed that MR decreased with an increase of moisture 

content. Within the scope of this study, impact of fines content varied which were 

affected by moisture content and material source. At subfreezing temperatures, there 

was a significant increase of MR when compared with those at room temperature. 

Impacts of fines and initial moisture content on MR values were weakened due to the 

change of moisture and aggregate structure after freezing process. Resilient behavior 

of D-1 materials were affected by temperature and deviator stress. At room 

temperature, MR of D-1 materials from three regions increased with increase of 

confining pressure when moisture contents ranged from 3.3% to 6%. However, at low 

moisture content, MR decreased as the applied deviator stress increased. When 

moisture content was at the OMC or higher, MR increased with increase of deviator 

stress. However, effect of confining pressure became insignificant for D-1 materials at 

high moisture content. At subfreezing temperatures, the confining pressure did not 

provide significant effect on resilient modulus values. Temperature was found to be 

another important influencing factor on MR of D-1 materials, especially when 

temperature ranged from -5 oC to 0 oC. As temperature decreased, MR increased. 

However, when temperature was decreased to -5 oC, MR values seemed to be stable 

and further change of temperature did not result in any significant change of MR. 

Resilient properties of D-1 materials at room temperature after one freeze-thaw cycle 

were also investigated in this study. The reduction of MR after the freeze-thaw cycle 

was inevitable and significant, especially for aggregate specimens with high fines 

contents. Permanent strain of D-1 materials was significantly affected by moisture 

content. The higher the moisture content, the higher the permanent strain. Effect of 

fines content on permanent strain of D-1 materials was insignificant which could be 

affected by other factor such as moisture content, aggregate shape, and material 

source. At subfreezing temperatures, permanent deformation increased with as 

increase of temperature, especially when temperature was close to 0 oC. 

Regression equations were also developed to correlate MR values with the 

physical properties (moisture and fines contents), stress states, and temperature 



  v 
  
 

  

conditions of D-1 materials. For D-1 materials tested in this study, at room 

temperature, MR was found to be a function of stress state, moisture and fines 

contents. At subfreezing temperatures, MR was a function of deviator stress, 

temperature, and aggregate type. These equations obtained can be used to predict MR 

values of Alaskan D-1 materials for pavement design.  

In this study, frozen D-1 material specimens were prepared using the one-

dimensional frost heave cell for MR tests at subfreezing temperatures. As the open 

system of water access represents the worst scenario that a pavement structure could 

possibly experience, it is necessary to investigate the behavior of base course 

materials under other conditions with limited water access during freezing in order to 

complement the existing research and have a better understanding of the combined 

effect of fines content and moisture content on the resilient behavior of D-1 materials 

under different conditions of water access. In this study, frost heave after freezing 

process for D-1 materials with high fines was not significant. One possible reason was 

that only one temperature gradient was used. Therefore, some other temperature 

gradients are suggested for specimen preparation in future studies to better understand 

the resilient behavior of D-1 materials at different temperature conditions. Also, 

physical properties of D-1 materials from three regions were similar. Therefore, more 

tests for D-1 materials from different sources are needed to characterize the effect of 

fines content on resilient behavior of D-1 materials.  
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 CHAPTER I 
 

INTRODUCTION 

 

Roadway pavement base course saturation and weakening because of partial thawing 

is the typical springtime condition in most northern regions and is normally reflected 

by reductions in the resilient properties of the affected materials. The percentage of 

fines usually controls the aggregate’s ability to support vehicular load, especially 

during the springtime thaw period. However, the impact of fines content on the 

resilient behavior of granular base course materials during thawing has not been 

thoroughly investigated, especially with respect to the material types and climatic 

conditions typical of most northern regions.  

D-1 materials (Table 1.1), defined according to Standard Specifications for 

Highway Construction (McHattie 2004), are commonly used as granular base course 

material in Alaska. Hence, this study systematically investigated the resilient behavior 

of D-1 base course materials commonly used in three regions of Alaska and effects of 

various factors on the materials performance, as presented in this thesis.  

 

Table 1.1 Definition of D-1 Granular Base Course Material 

Sieve size 1 in. 3/4 in. 3/8 in. No.4 No.8 No.50 No.200 
% Passing 100 70-100 50-80 35-65 20-50   8-30    0-6 

 

 

Problem Statement  

 

In 1980s, an extensive performance study of 120 Alaskan flexible pavement sections 

(McHattie 1980, McHattie 1982, Esch et al. 1981, Esch and McHattie 1983) indicated 

that the percentage of fines (weight-based percentage of particles finer than 0.075mm) 

usually controls the aggregate’s ability to support vehicular load, especially during the 

springtime thaw period. Excess fines will cause springtime softening in layers 

supporting the pavement surface layer. In addition, the critical excess fines content 

(i.e. threshold fines content) varies with different aggregate sources, gradations, and 
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moisture contents. To best evaluate the service life of pavements under cold-region 

climates, these factors become mandatory in pavement design. Yet these factors have 

not been thoroughly investigated, especially with respect to the material types and 

climatic conditions typical of most northern regions. Therefore, there is a need to 

investigate the impact of fines content on the resilient behavior of aggregate base 

course materials during thawing for D-1 materials with different material sources, 

gradations, and moisture conditions.  

 

Research Objectives 

 

In this study, the following objectives are addressed: 

 

• To systematically evaluate the impact of fines content on the resilient modulus of 

base course materials during thawing,  

• To investigate the associated performance of base course materials with varied 

fines content, gradation, and moisture content. The performance to be investigated 

includes permanent deformation potential, and soil-water characteristic curves 

(SWCC), and 

• To evaluate the material properties, ki which are required for the flexible 

pavement design.  

 

Research Methodology 

 

To meet the objectives of this study, the following major tasks are accomplished: 

 

• Task 1: Literature Survey 

• Task 2: Laboratory Study 

• Task 3: Test Results and Analyses  

• Task 4: Conclusions and Recommendations 
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Task 1: Literature Survey 

 

A comprehensive literature review was conducted to gather information related to this 

study. Resilient properties of base course materials and MR testing methods were 

reviewed. Literature review also included the impact of factors such as moisture 

content, fines content, temperature, and freeze-thaw cycle on resilient properties of 

granular materials. 

Past literature on simulation of frost heave process was also gathered, as it related 

to sample preparation of MR test at subfreezing temperatures. Literature review on 

previous regression models pertaining to resilient modulus under subfreezing and 

nonfreezing temperatures was also performed. The literature findings were 

summarized and documented in Chapter II. 

 

Task 2: Laboratory Study 

 

In this study, tests were performed mainly in the laboratory. Three D-1 base course 

materials commonly used in each of the three regions (Southeast, Northern, and 

Central Regions) of AKDOT&PF were used. Four fines contents, three moisture 

contents, and a series of temperatures were selected to investigate the effects of those 

factors on resilient behavior of D-1 materials from three regions. Prior to the mix 

design and specimen preparation, the aggregate fundamental physical properties were 

evaluated including aggregate gradation, OMC, maximum dry density (MDD), and 

abrasion resistance. Aggregate specimens were prepared using the impact compaction 

method with a soil compactor. For specimens to be tested at subfreezing temperatures, 

a frost heave cell was used to simulate the natural frost heave processes.  

In this study, the laboratory tests were conducted according to test protocols 

described in American Society for Testing and Materials (ASTM) or American 

Association of State Highway and Transportation Officials (AASHTO) Standard Test 

Methods. Frost susceptibilities of the soil specimens were identified by evaluating 

frost heave values and change of moisture contents after the freezing process. 

Repeated load MR tests were conducted to determine the MR of aggregate specimens 
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in a temperature-controlled environmental chamber. The experimental details were 

presented in Chapter III. 

 

Task 3: Test Results and Analyses 

 

In this task, laboratory test data were statistically analyzed. The frost heave data and 

resilient properties of D-1 base course materials were summarized. The effects of 

factors such as fines content, stress state, temperature, freeze-thaw cycle, and 

moisture contents on material performance were also evaluated. Also, permanent 

deformation data were collected for D-1 materials after MR tests. Models were 

developed for predicting MR of D-1 base courses materials with different fines and 

moisture contents at different temperatures. Chapter IV presents the detailed work 

under this task.  

 

Task 4: Conclusions and Recommendations 
 

Based on the tasks above, a summary of conclusions were presented in this task. Also, 

recommendations regarding future study of resilient properties of D-1 used as base 

course material were made and presented in Chapter V. 

 



  5 
  
 

                                                                                  

CHAPTER II 

 

LITERATURE RIVIEW 

 

A comprehensive literature review was performed to gather information related to 

resilient properties of granular base course materials under repeated loading. Topics 

covered begin with a brief introduction of MR definition and testing methods. This is 

followed by a discussion of the factors that affect the resilient properties of base 

materials such as fines, temperature, moisture content, stress state, and freeze-thaw 

cycle. Also, review of previous regression models pertain to MR under subfreezing 

and nonfreezing temperature was performed. The literature findings are summarized 

and documented as follows. 

 

MR and Its Testing Methods 

 

Definition of MR 

 

The concept of MR was firstly introduced by Seed et al. (1955). The resilient response 

of granular materials is usually characterized by MR at a given stress state. As a 

vehicle passes over pavement structure, a stress pulse is applied to base course layer. 

Unbound granular base course material exhibits a combination of resilient strains, 

which are recovered after each load cycle, and permanent strains, which accumulate 

with every load cycle. The stress-strain relationship for unbound granular base course 

material is non-linear as illustrated in Figure 2.1.  
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Figure 2.1 Definition of MR 

 

MR is mathematically defined as the applied deviator stress divided by the 

“recoverable” strain that occurs when the applied load is removed from the test 

specimen (Equation 2.1).  

 

d
R

r

M σ
ε

=                                                                 (2.1) 

where, 

dσ    =  deviator stress, and 

rε      =   recoverable or resilient strain. 

 

MR was adopted by the AASHTO (1993). This procedure incorporated the MR 

concept to properly describe behavior of pavement materials subjected to moving 

traffic. After that, MR became an important required input parameter for pavement 

design. 
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Testing methods 

 

Federal Highway Administration (FHWA) set a standard protocol for MR testing 

which was known as Long Term Pavement Performance (LTPP) Protocol P46 (1996). 

For granular base course materials, LTPP Protocol P46 shares the same loading 

sequences with AASHTO T307 (2002). In subsequent years, a large amount of MR 

data was produced and used in the late 1990s as the parameter became more heavily 

involved in pavement design processes. 

MR is determined by performing repeated load triaxial test on cylindrical 

specimens. In LTPP Protocol P46 or AASHTO T307, repeated dynamic haversine 

loading waveform with a loading duration of 0.1 sec is used. This load pulse is 

followed by a 0.9 s period in which only a seating load equal to 10% of the peak 

stress is applied to the specimen while the soil recovers from the loading to simulate 

the passing of one axle over a pavement followed by a period of rest before the 

passing of next axle in the field. Conditioning is utilized to reduce the disturbances 

due to specimen preparation procedures and minimize the effects of imperfect contact 

between end platens and specimen. This loading cycles for conditioning repeat at least 

500 times at different confining pressure and deviator stress levels before MR data 

collection. Then, every loading sequence repeats 100 times as long as the permanent 

strain was within a 5% limit for the entire loading history during testing. Loading 

sequences repeat 15 times at different confining pressure and deviator stress levels. 

For pavement design, it is anticipated that the resilient deformation increases more 

than the permanent deformation as more load cycles are applied, such that after a 

large number of cycles the deformation under each cycle is nearly recoverable. Hence, 

MR values are calculated with the last five cycles in each loading sequence.  

A new protocol known as the National Cooperative Highway Research Program 

(NCHRP) 1-28A (2002) was released to improve the old protocol. There were several 

differences between these procedures. One of the most significant differences is that 

the new protocol involves larger stresses on specimens. These stresses are large 

enough to cause the failure of some soil specimens. NCHRP 1-28A has a larger 

number of test sequence variations for different soil classifications and the load pulse 

that simulates traffic loading is lengthened from 0.1 s to 0.2 s. However, the primary 
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difference for granular soils is the number of loading sequences. LTPP P46 requires 

cyclic testing at 15 different combinations of confining pressure and deviator stress 

levels, while NCHRP 1-28A requires 30. In addition, NCHRP 1-28A has not yet been 

widely implemented and the majority of existing MR data was generated by using 

LTPP P46 or AASHTO T307. For these reasons, AASHTO T307 was selected as the 

testing method for determination of MR in this study. 

 

Influencing Factors of MR 

 

Since the introduction of the concept of MR in 1955, a considerable amount of 

research has been devoted to evaluating the resilient properties of pavement materials. 

Experimental results on the MR of granular materials with different aggregate sources, 

different testing procedures, and use of different numerical models have been 

reported.   

Previous research efforts were directed towards the influencing factors on resilient 

properties of soil. Most of these studies were focused on the effects of moisture 

content, density, and stress condition (Mitry 1964, Smith and Nair 1973, Elliot and 

Thornton 1988, Elfino and Davidson 1989, Brown and Selig 1991, Kolisoja 1997). At 

room temperature, moisture content can affect resilient properties of granular 

materials significantly (Haynes and Yoder 1963, Hicks and Monismith 1971, Vuong 

1992). Under undrained condition, with increase of moisture content, excess pore-

water pressure develops due to repeated loading. As the development of pore-water 

pressure, effective stress decreases with a subsequent decrease in both strength and 

stiffness. Rada and Witczak (1981) evaluated the test results obtained from 10 

research agencies and indicated that the primary variables that influence the MR 

response of granular materials are the stress state, degree of saturation, and degree of 

compaction.  

Principle stress is one of the most important factors affecting resilient properties 

of soil. Brown and Hyde (1975) reported that the permanent axial strain settled down 

to a constant  related to the ratio of the deviator stress and confining pressure on 
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crushed stone after MR tests. Sweere (1990) stated that MR increased considerably 

with an increase in confining pressure and sum of principal stresses.  

Aggregate shape and texture is another influencing factor which should be 

considered for coarse materials. Heydinger et al. (1996) stated that gravel have a 

higher MR than crushed limestone. Also, many other researchers (Hicks and 

Monismith 1971, Allen and Thompson 1974, Thom 1988, Thom and Brown 1989) 

showed that crushed aggregate, having angular to subangular shaped particles, 

provides better load spreading properties and a higher MR than uncrushed gravel with 

subrounded or rounded particles. A rough particle surface is also shown to result in a 

higher MR. Barksdale and Itani (1989) stated that the MR of the rough, angular 

crushed materials was higher than that of the rounded gravel by a factor of about 50% 

at low mean normal stress and about 25% at high mean normal stress. 

The variation of fines content in the range of 2-10% was reported by Hicks (1970) 

to have a minor influence on MR. Limited studies revealed that when fines content in 

granular materials is relatively high, effect of fines content on resilient properties will 

display. Permanent deformation resistance in granular materials is reduced as the 

amount of fines increases (Barksdale 1991). Due to different gradations, effect of 

fines content on resilient properties of soil can also be different. An extensive 

performance study of 120 Alaskan flexible pavement sections (McHattie 1980, 

McHattie 1982, Esch et al. 1981, Esch and McHattie 1983) indicated that the 

percentage of fines (weight-based percentage of particles finer than the #200 sieve, 

also known as P200 content) usually controls the aggregate’s ability to support 

vehicular load, especially during the springtime thaw period. The general relationship 

is low P200 content = good support and high P200 content = poor support. Excess P200 

will cause springtime softening in subsurface base/subbase layers and subsequent 

deterioration of the surface layer. This is explained by a correlation between the 

amounts of frozen moisture to the P200 content in granular layers. Additional research 

led to the development of the excess fines method (McHattie et al. 1980 and 1982, 

Esch et al. 1981 and 1983) for Alaska flexible pavement design based on the 

establishment of an empirical relationship between the P200 content and the springtime 

pavement surface deflection corresponding to a thaw-weakened state. As a useful 

indicator of frost susceptibility for pavement design purposes, the critical excess fines 
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content varies with different aggregate sources, gradations, moisture contents. 

Therefore, it is clearly important to investigate the impact of fines content on the 

resilient behavior of base course materials during thawing for different material 

sources, gradations, and moisture conditions. 

Previous studies indicated that the resilient properties demonstrate extensive 

variation due to seasonal freezing and thawing actions. Any realistic pavement design 

or evaluation must account for these changes. Fredlund et al. (1975) found a 

significant reduction in matrix suction after freeze-thaw cycling, which was 

associated with a reduction in MR. Bergan and Fredlund (1972) presented that similar 

reductions in matrix suction occurred in undisturbed subgrade samples during spring 

thaw. The resilient properties of granular materials from frozen to thawed conditions 

were investigated (Johnson et al. 1978, Cole et al. 1986, and Berg et al. 1996). 

Simonsen et al. (2002) summarized basic conclusions from these investigations as 

follows: (1) significant loss of strength upon thaw for most soils tested; (2) a gradual 

regain of strength as moisture drained from the soil during the recovery period; and 

(3) a two-to three-order magnitude increase in strength of all materials at subfreezing 

temperatures. Associated with a reduction in MR was a significant reduction in matric 

suction after freeze-thaw cycling (Fredlund et al. 1975). The reduction in matric 

suction was substantial below the optimum moisture content, diminishing above 

optimum. Also, extensive MR laboratory test during full freeze-thaw cycle on various 

coarse and fine-grained subgrade soils were carried. However, closed-system and 

omnidirectional freezing and thawing utilized in this study are a limitation compared 

to many naturally occurring systems. Water uptake was not allowed during freezing. 

Moreover, realistic freezing of triaxial soil samples requires uniaxial freezing and 

thawing, which is difficult to combine with MR testing without disturbing the sample.  

 

MR Modeling  

 

Resilient behavior of granular materials is affected by many factors. The complexity 

of the problem has made it difficult for researchers to model the relationship between 

stress states with material stiffness. After several decades of endeavor, in order to 

describe stress dependence of the MR, several constitutive models have been 
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developed using various stress variables. A great majority of the models found in the 

literature are based on simple curve-fitting procedures by using the data from 

laboratory triaxial testing. Some of the models are presented as below. 

Dunlap (1963) and Monismith et al. (1967) showed that the MR of granular 

materials increase with confining pressure and is sensibly unaffected by the 

magnitude of repeated deviator stress. Also, the following expressions (Equations 2.2 

and 2.3) based on the effect of confining pressure were proposed: 

 
2

1 3
k

RM kσ=  (2.2)                               

2

3
1

k

R
a

M k
p
σ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.3)                              

 

where,  

ap       =  normalizing stress (atmospheric pressure, 14.5 psi), 

1 2,k k   =  regression constants, and  

3σ       =  minor principal stress/ confining pressure. 

 

Actually, the main drawback of this model is that deviator stress was not included. 

May and Witczak (1981) stated that the magnitude of the shear strain induced mainly 

by deviator stress can also result in change of the in-situ MR of a granular layer.  

One of the most popular models in dealing with the effect of stress on material 

stiffness is the expression solely based on the sum of the principal stresses (bulk 

stress). Seed et al. (1967), Brown and Pell (1967), and Hicks (1970) developed the 

following relationship which was known as K θ−  or bulk stress model shown in 

Equations 2.4 and 2.5. 
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                                                    (2.5) 

where,   
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θ    =  bulk stress = 1 2 3σ σ σ+ +  and 

1 2 3, ,σ σ σ   =  principal stresses. 

 

Due to its simplicity, K θ−  model is widely accepted by engineers for analysis of 

stress dependence of granular material stiffness. However, this model also has several 

drawbacks. The main drawback is that it does not account for shear stress and strain 

developed during loading and this model could not be able to properly handle 

volumetric strains or dilative behavior of soil. In addition, the effect of stress on MR is 

accounted for solely by the sum of the principal stresses which means this model 

potentially provides the same MR when similar bulk stresses are used. These bulk 

stresses can be obtained either from higher confining pressure and lower deviator 

stress or lower confining pressure and higher deviator stress. This indicates the model 

does not incorporate the realistic response of confining and deviator stresses on the 

resilient properties. Several studies have shown this to be insufficient and additional 

stress parameters are required.  

Recognizing the drawbacks of confining pressure and K θ−  models, several other 

models were developed by other researchers. Among them, one model known as 

octahedral stress state model developed by Witczak and Uzan (1988) appears to be a 

feasible and realistic one due to the introduction of deviator stress into K θ−  model 

as shown in Equations 2.6 and 2.7.  

 
2 3

1

k k

d
R a

a a

M k p
p p

σθ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                          (2.6) 

2 3

1

k k

oct
R a

a a

M k p
p p

τθ⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                             (2.7) 

where， 

octτ   =  octahedral shear stress 2 2 2
1 2 1 3 2 3

1 ( ) ( ) ( )
3

σ σ σ σ σ σ= − + − + −  and 

dσ    =  deviator stress = 1 3σ σ− .    
 

This model not only accounts for dilation effects by incorporating shear stresses as 

one of the attributes, but it also accounts for the confining pressure effects. For triaxial 
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conditions, since intermediate and minor principal stresses are equal ( 2 3σ σ=  

and
2

3oct dτ σ= ), these parameters can be determined by the confining and deviator 

stress applied in a triaxial test. This model can be used for various soil types without 

altering two model attributes, octahedral normal and shear stresses. The resilient 

properties of the soils are dependent on confining pressure, normal stress, and 

deviator stress state. The octahedral normal and shear stresses provided a better 

explanation for the stress states of a material.  

In Mechanical-Empirical Pavement Design Guide (MEPDG) (ARA, Inc. 2000), 

the regression model, modified based on Equation 2.7, was presented for MR 

prediction as shown in Equation 2.8. 

 
2 3

1 1
k k

oct
R a

a a

M k p
p p

τθ⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠
                                          (2.8) 

 

Pavement structures are always “stronger” below 0 °C than those above 0 °C. 

According to Simonsen et al.’ study (2002), a mathematical expression of the 

regression model shown in Equation 2.9, was used to represent the resilient properties 

of materials under subfreezing temperature. Temperature is the only independent 

parameter in this model.  

 

1 2 /k k T
RM e +=                                             (2.9)  

where,  

1 2,k k   =  regression constants and 

T        =  temperature, degree Celsius. 

 

Frost Heave Simulation 

 

Topics on frost heave of soil have been studied for nearly 80 years. Casagrande 

(1932) proposed that under natural freezing conditions and with sufficient water 



  14 
  
 

                                                                                  

supply one should expect considerable ice segregation in non-uniform soils containing 

more than 3% of grains smaller than 0.02 mm. Generally, three essential conditions 

are required for frost heave: (1) frost susceptibility of the soil or aggregate within the 

depth of frost penetration, (2) the availability of water, and (3) the magnitude and 

duration of freezing temperatures at the surface. Water residing within the soil or 

aggregate structure at the time of freezing can be a principal source of moisture in the 

formation of ice lenses even in closed systems (Hermansson  2000, Guthrie and 

Hermansson  2003). However, the rate of frost heave in such cases is ultimately 

limited by the decreasing availability of free water in the soil. In other words, when 

soil water is replenished from below as readily as it is redistributed to the freezing 

front above, frost heave may remain uninterrupted. Such sustained frost heave activity 

requires the continuous intake of new water by the freezing soil strata. In the field, the 

availability of free water is determined to a large degree by the relative proximity of 

the ground water table to the freezing front. A deep water table can reduce the supply 

of water to the freezing front, thereby limiting the occurrence of frost heave in upper 

layers. Conversely, a shallow water table can facilitate an increased flow of water to 

the freezing zone and lead to greater frost heave. 

Konrad and Morgenstern (1980) performed frost heave test to determine unique 

frost heave characteristics and stated that at the beginning of freezing, the ice may 

strain without breaking. However, as the frozen front penetration rate decreases, 

temperature change rate across the sample is also reduced. Water is then able to 

accumulate at a given level for a longer period of time. The adjacent ice is then 

strained to a higher degree which will lead to failure of the ice grains. Further water 

accumulation and freezing result in the formation of a discrete ice lens and surface 

cracking and roughness of pavement will appear. This ice lens is now unstressed and 

grows onto a roughly planar substrate composed of soil particles, unfrozen water, and 

the pore ice at the top of the frozen fringe. However, in spring, frozen soil melts from 

top to inside. Continuous accumulation of water resulted in reduction of road bearing 

capacity during spring thaw in upper part of roadbed (Taber 1930).  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V86-4G82XVC-2&_user=6861066&_coverDate=12%2F31%2F2005&_rdoc=1&_fmt=full&_orig=search&_cdi=5862&_sort=d&_docanchor=&view=c&_acct=C000055858&_version=1&_urlVersion=0&_userid=6861066&md5=a0d972268698b9cdf14d2c734783ba9d#bib11
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V86-4G82XVC-2&_user=6861066&_coverDate=12%2F31%2F2005&_rdoc=1&_fmt=full&_orig=search&_cdi=5862&_sort=d&_docanchor=&view=c&_acct=C000055858&_version=1&_urlVersion=0&_userid=6861066&md5=a0d972268698b9cdf14d2c734783ba9d#bib8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V86-4G82XVC-2&_user=6861066&_coverDate=12%2F31%2F2005&_rdoc=1&_fmt=full&_orig=search&_cdi=5862&_sort=d&_docanchor=&view=c&_acct=C000055858&_version=1&_urlVersion=0&_userid=6861066&md5=a0d972268698b9cdf14d2c734783ba9d#bib25
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CHAPTER III 

 

LABORATORY STUDY 

 

This chapter consists of a description of the experimental details in this study 

including the materials, specimen preparation, testing setup, and testing methods. 

General aggregate properties such as aggregate gradations, OMC and MDD, abrasion 

resistances, frost susceptibilities and other properties are presented in this chapter. 

Repeated load triaxial tests were conducted to evaluate the seasonal variation of the 

resilient properties and permanent deformation of D-1 granular base course materials 

with different fines and moisture contents, and temperatures.  

 

Materials 

 

D-1 materials used in this study were collected from three regions: Northern 

(Fairbanks), Southeast (Juneau), and Central (Anchorage) regions of AKDOT&PF 

(Figure 3.1). Prior to the specimen preparation, aggregate properties were evaluated 

including aggregate gradation, abrasion resistance, OMC, and MDD. 

 

 
Figure 3.1 D-1 materials from three regions of AKDOT&PF 
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Gradation 

 

Particle size distribution was analyzed by conducting sieve analysis and hydrometer 

tests for D-1 materials from three regions according to AASHTO T 27 (2002) and 

ASTM D422-63 (2007), respectively. Gradation curves with particle size greater and 

less than 0.075 mm (Sieve No. 200) are presented in Figures 3.2 (a) and (b).  
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(b) Particle size less than 0.075 mm 

Figure 3.2 Gradation curves for D-1 materials from three regions 

It can be seen from Figure 3.2 (a), D-1 materials from three regions had very close 

gradations. For particles with sizes greater than 10 mm, the gradations of three 

materials were close to the upper limit while for particles with sizes less than 2.36 mm 
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(Sieve No. 50), the gradations of three materials were close to the lower limit of the 

D-1 material. Since the gradations for three D-1 materials were very close, a single 

gradation, obtained by averaging the original gradations for three D-1 materials in 

Figure 3.2, was used to represent the D-1 materials from all three regions. The 

representative gradation, with a fines content of 3.15% as shown in Figure 3.3, was 

the reference gradation. Figure 3.2 (b) shows that contents of particles with size less 

than 0.02mm for D-1 materials from three regions are less than 3% which indicated 

they were non-frost susceptible soils according to Casagrande’s criteria (1932). 

Appendix A tabulates the gradation results for D-1 materials from three regions.  

As summarized in Chapter II, frost susceptibility is highly related to the fines 

content of the material, which could significantly affect the ability of aggregate to 

support the vehicle load on pavement surface. One of the objectives of this study was 

to investigate the influence of fines content on resilient properties of D-1 materials 

during freeze-thaw cycles. Fines content of 6% is the maximum fines content 

specified in Alaska Standard Specifications for Highway Construction (Table 1.1). In 

order to evaluate the variation of resilient properties of D-1 materials with high fines 

content, fines contents of 8%, and 10% were also selected. Gradation curves of D-1 

materials with four different fines contents, 3.15% (reference), 6%, 8%, and 10% are 

shown in Figure 3.3, where FC represents fines content. The gradations for aggregates 

with 6%, 8%, and 10% fines contents were obtained by increasing the fines (<0.075 

mm) contents in the reference gradation from 3.15% to the target percentages while 

maintaining proportions of particles with size greater than 0.075mm unchanged 

(Figure.3.3). Table 3.1 summarizes the contents of particles with size less than 

0.02mm for D-1 materials from three regions with different fines content. It can be 

seen that at fines content of 8%, D-1 material from Central Region was frost 

susceptible. All D-1 materials from three regions with a fines content of 10% were 

frost susceptible. With the introduction of higher fines to D-1 materials, the 

susceptibility to frost heave increased. The gradations of D-1 materials used in this 

study are tabulated in Appendix B. 
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Figure 3.3 Gradation used for D-1 materials 

 

Table 3.1   Contents of Particles with Size less than 0.02 mm in D-1 Materials 

% less than 20 u (0.02 mm) % less than 2 u (0.002 mm) Fines(<0.075mm)
Northern Central Southeast Northern Central Southeast

Original  0.83% 1.23% 1.28% 0.24% 0.45% 0.37% 
3.15% 0.97% 1.34% 1.03% 0.28% 0.49% 0.30% 

6% 1.84% 2.54% 1.97% 0.53% 0.93% 0.57% 
8% 2.46% 3.39% 2.63% 0.71% 1.24% 0.76% 
10% 3.07% 4.24% 3.28% 0.89% 1.55% 0.95% 

 
 

OMC, MDD, Classification, and Soil -Water Characteristic Curve  

 

In order to determine OMCs and MDDs of D-1 materials, compaction tests were 

conducted according to ASTM D 1557 Method C (2007). Aggregate specimens were 

compacted in five layers and each layer was subjected to 56 blows with a 10 lb and a 

hammer drop of 18 inches (457 mm). The specimens used in this study were 8 inches 

in height and 4 inches in diameter according to MR test (AASHTO 2002). The 

mechanical compactor used in this study is shown in Figure 3.4. Table 3.2 

summarizes the physical properties of the D-1 materials from three regions. 
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Figure 3.4 Automatic mechanical compactor 

 

Table 3.2   Physical Properties of D-1 Materials 

Classification* Central  
(%, pcf) 

Northern 
(%, pcf) 

Southeast 
(%, pcf) Fines 

content 
AASHTO USCS OMC MDD OMC MDD OMC MDD 

3.15% A-1-a GW 5.8 146.5  5.2 141.4 5.3 156.0 
6% A-1-a GW-GM 6.0 147.9  5.2 146.1 5.3 156.2 
8% A-1-a GW-GM 5.4 150.2  5.3 148.0 5.4 156.7 
10% A-1-a GP-GM 5.3 151.0  5.3 148.1 5.5 156.8 
*GW — well-graded gravel with sand 
GW-GM — well-graded gravel with silt and sand 
GP-GM — poor-graded gravel with silt and sand 
 

The results from compaction tests for D-1 materials from three regions with 

different fines contents are illustrated in Figure 3.5. Detailed compaction test results 

are shown in Appendix C. Among all these materials, D-1 materials from the 

Southeast Region had the highest MDDs. From Table 3.2 and Figure 3.5, one can find 

that MDDs slightly increased when fines content increased from 3.15% to 10%. 

However, when fines content was close to 10%, increase of fines content had little 

effect on aggregate density. Since all D-1 materials in this study were mostly 

composed of gravels and subsequently had low specific surface areas, all materials 

had low OMCs of approximately 5.3%. When moisture content was greater than 
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OMC, aggregate could easily be saturated and could not hold the original moisture 

content during compaction. Most aggregates started bleeding during compaction when 

moisture content was greater than 6%. Table 3.2 also presents soil classification 

results. According to the Unified Soil Classification System (USCS), the 

classifications of D-1 materials with four fines contents used in this study varied from 

well-graded gravel with sand (GW) to poor-graded gravel with silt and sand (GP-GM) 

as the fines contents increased from 3.15% to 10%. Based on AASHTO Soil 

Classification System, all D-1 materials are classified as A-1-a (granular material). 
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(a) D-1 materials from Northern Region 
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 (b) D-1 materials from Central Region 
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(c) D-1 materials from Southeast Region 

 
Figure 3.5 Density vs. moisture content curves for D-1 materials 

 

Soil-water characteristic curve (SWCC) is defined as the variation of water content 

or degree of saturation with suction. In this study, SWCCs of the three D-1 materials 

were obtained using a pressure plate extractors shown as in Figure 3.6a according to 

ASTM standars D2325-68. The matric suction was applied to a soil specimen by 

controlling the difference in the pore air pressure ua and the pore water pressure uw 

with both pressures being positive as shown in Figure 3.6b. The pore water pressure 

was controlled at an atmospheric pressure while the pore air pressure was changed to 

obtain the specific matric suction value. This procedure is referred to as the axis-

translation technique (Hilf 1956). The main component of the pressure plate extractor 

is the high air entry disk as shown in Figure 3.6b that remains saturated for matric 

suction applications below the air entry value of the disk. The disk is always saturated 

and in contact with in a compartment below the compartment below the disk. The 

water pressure in the compartment is opened to the atmosphere to maintain at a 

positive pressure in the closed system. During the test soil specimen is placed on the 

high air entry disk. A good contact between the specimen and the disk results in the 

pore water pressure in the soil being controlled at the same pressure as the water 

pressure in the compartment. The air pressure is then applied to the specimen in order 

to impose the desire matric suction. 
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The equipments for the pressure plate suction test are the 1Bar, 5 Bar and 15 Bar 

ceramic plate extractors (Soil moisture Equipment Corp.). Pressure gauge is the 

ASHCROFT Laboratory Test Gauge CAT. No. 1082A with 0-300psi range was used. 

The procedure of the pressure plate tests were:  

(1).  completely submerge the high air entry disk in the distilled water for three days; 

(2).  install the high air entry value disk into the pressure plate extractor;  

(3).  fill enough distilled water into the pressure plate extractor until the high air entry 

value disk is submerged completely, install the pressure plate extractor and wait 

for one day.  

(4).  applying a target air pressure to squeeze the water out.  

(5).  uninstall the pressure plate extractor, keep the high air-entry value disk intact, 

and add a small amount of water to submerge the disk surface.  

(6).  trim the soil sample to a shape fitting with the disk surface, the soil sample is the 

same size as that for consolidation test, put the tested soil sample on the high air 

entry disk, make sure the bottom of the soil is in good contact with the surface of 

the disk. The water should submerge part of the soil sample.  

(7).  install the pressure plate extractor and apply an air pressure.  

(8).  note that during the test, frequently observe the air pressure to avoid air leakage, 

and keep the air pressure constant. Keep the water level of the outlet to make 

sure that the whole pipe system is completely filled with water.  

(9).  after one week, record the matric suction and the soils were taken out to measure 

the water content. The water content tests were performed in a way as soon as 

possible to avoid the water evaporation.  

After testing (Figure 3.7), samples were taken out to determine their water 

contents. This procedure was repeated for each applied suction. Figures 3.8 ~ 3.10 

present SWCCs of D-1 materials from three regions with four fines contents in a 

semi-logarithmic scale. As can be seen in Figures 3.8 ~ 3.10, though the gradation 

curves of D-1 materials at the same fines content were the same, SWCC of D-1 

materials from three regions were slightly different, indicating that which surface 

tensions of materials from different regions were different. Under same applied matric 

suction, water contents of D-1 materials with high fines contents were higher than 

those with low fines contents. This is reasonable since fines have larger specific areas 
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and subsequent larger suction at the same water content. However, with increase of 

applied pressure, the difference of water content between D-1 materials with different 

fines content became insignificant. For D-1 material from Northern Region, water 

content varied slightly with different fines content which was not identical to the 

results for D-1 materials from Southeast and Central Regions. 

 

 
(a) Pictures of pressure plate extractors 

 

Distilled Water
reservoir

Soil Specimen High air-
entry disk

Air pressure
supply

Air-tight chamber

 
 

(b) Schematic plot of the pressure plate extractor 

Figure 3.6 Suction test using the pressure plate extractors 
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Figure 3.7 Soil samples after pressure plate test 
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Figure 3.8 SWCC of D-1 material from Central Region 
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Figure 3.9 SWCC of D-1 material from Northern Region 
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Figure 3.10 SWCC of D-1 material from Southeast Region 
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Abrasion Resistance and Shape of Aggregates 

 

Micro-Deval tester was used to measure the abrasion resistance of aggregates in this 

study (ASTM D6928 2010) as shown in Figure 3.11. To determine the abrasion 

resistance of coarse aggregates, aggregates were firstly oven dried. 1500 g 

representative testing aggregate was used with approximately 750 g for each group of 

aggregates with particle sizes ranging from 3/4" to 1/2" and 1/2" to 3/8". The 

aggregates were then immersed into two liters of water for a minimum one hour in a 

container. This was followed by placing the soaked aggregates with water into the 

Micro-Deval abrasion container with 5000 g steel balls. Micro-Deval container was 

then placed on the machine shown in Figure 3.11. The machine was left running at 

100 rpm for 12000 revolutions. The aggregates were then carefully poured over a No. 

4 Sieve superimposed on a No. 16 Sieve. Steel balls were removed by using the 

magnetic bar shown in Figure 3.11. Particles passed the No. 16 Sieve were discarded. 

The material left was oven-dried to a constant mass. Loss of mass after testing divided 

by the original mass is defined as Micro-Deval abrasion loss.   

 

  
Figure 3.11 Micro-Deval tester 

 

Percent fractured face (one face) and flat or elongated particles based on ASTM 

D5821 (2006) and ASTM D4791 (2005), respectively, were evaluated for D-1 

materials from three regions. Testing results and requirements of D-1 materials 

specified in Alaska Standard Specifications for Highway Construction (McHattie 
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2004) are summarized in Table 3.3. It can be seen that D-1 material from Northern 

Region had the best abrasion resistance performance when compared with D-1 

material from Southeast and Central Regions. Percent fractured face is a measure of 

aggregate angularity. In flat or elongated particles test, if the ratio of length to width 

or width to thickness of an aggregate particle is 5:1 or over, it is defined as a flat or 

elongated particle. The test result is presented by the percentage of the number of flat 

or elongated particles over the number of entire aggregate particles. 100% particles of 

D-1 materials from Southeast Region had at least one fractured surface, while the 

percent of fractured surface for Central and Northern Regions were 91.7% and 84.5%, 

respectively. In these tests, D-1 materials from Southeast Region contained 3% flat 

and elongated particles and none of them were found in materials from Central and 

Northern Regions. 

 

Table 3.3 Engineering Properties of D-1 Materials from Three Regions 
Percent Fractured Face  

(one face) (%) 
Flat or Elongated Particles 

(5:1, %) Source Micor-Deval 
(% Loss) Test Results Requirement Test 

Results Requirement 

Southeast Region 9.7 100 3 
Central Region 5.8 91.7 0 

Northern Region 2.7 84.5 
≥80 

0 
≤8 

 

Specimen Preparation 

 

Factors considered in this study to affect the MR of D-1 materials in Alaskan 

pavements include fines content, temperature, and moisture content. The laboratory 

test factorials are summarized in Table 3.4. Four fines contents used were 3.15%, 6%, 

8%, and 10%. Eight different temperatures were used, which were -10 oC, -7 oC, -5 

oC, -4 oC, -3 oC, -2 oC, -1 oC, and 20 oC to simulate the natural freeze-thaw cycle. 

According to Simonsen (2002), MR of aggregate will not change much for any 

temperature below -10 oC. Attempts were made to evaluate resilient properties for 

frozen D-1 materials at 0 oC. However, it was found that it was very difficult to 

maintain the environmental chamber to a constant temperature of 0 oC. Three 

moisture contents were used, which were 3.3% (OMC-2%), 5.3% (OMC), and 6% 



  28 
  
 

                                                                                  

(OMC+0.7%). The moisture content here was the design moisture content when 

aggregate blended with water. Moisture content of 6%, which is 0.7% above OMC, 

was found to be the maximum moisture content at which aggregate can hold during 

compaction.  

Table 3.4 Design Factors 
Factors  No. of levels Levels  

Fines content (FC) 4 3.15%, 6%, 8%, and 10% 
Temperature 8 -10oC,-7 oC,-5 oC,-4 oC,-3 oC,-2 oC,-1oC, and 20oC 

Moisture content (MC) 3 OMC, OMC-2% and OMC+0.7% 
 

The aggregates with specified gradations according to Figure 3.3 were firstly 

mixed with water to specified moisture contents according to Table 3.4, and then 

compacted using the compactor shown in Figure 3.4. Following the same procedure 

as described in compaction test, one of the aggregate specimens was obtained and 

shown in Figure 3.12. For MR test at room temperature, aggregate specimen was 

covered around by rubber membranes with help of a membrane stretcher (Figure 

3.13).  

 

Figure 3.12 Compacted aggregate base course specimen  
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Figure 3.13 Membrane and membrane stretcher 

 

After covering with membrane, aggregate specimen was immediately used for the 

resilient tests under unfrozen conditions. For MR tests at subfreezing temperatures, an 

open system frost heave cell was designed for the specimen preparation. Aggregate 

specimens were put into the frost heave cell to perform frost heave test first. A 

cylindrical plastic mold (Figure 3.14) was used to hold the specimen in the frost heave 

test. Part of the plastic mold bottom was cut off to ensure free water intake. A thin 

film of porous stone (Figure 3.15 (a)) was placed at the bottom of the mold. This was 

followed by covering a piece of filter paper (Figure 3.15 (b)) on the porous stone. 

Then, aggregate specimens were ready to be placed into the mold.  

 

 

Figure 3.14 Cylindrical plastic mold 
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(a)                                     (b) 

Figure 3.15 Porous stone and filter paper 

 

Aluminum plates were used to cover the top of specimen molds. The aggregate 

specimen after installation before putting into the frost heave cell is shown in Figure 

3.16. Also, five holes were predrilled symmetrically along two sides of the mold to 

provide some space for installation of thermocouples. The thermocouples were fixed 

to the plastic mold using duct tape and used to monitor temperatures at different 

heights during the freezing process.  

 

Aluminum plate 

Thermocouple 

Duct tape

 

Figure 3.16 Specimen before frost heave test 

 

After installation of thermocouples, the specimen was ready to be moved into the 

frost heave cell for one dimension frost heave test, which will be described later. 

When the frost heave test was accomplished, the frozen aggregate specimen was 

taken out, and covered by a rubber membrane for the MR test.  
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Testing program 
 
 
Frost Heave Test  

 

A frost heave setup was designed and constructed to simulate the natural freezing 

process, which allowed performing one-dimensional frost heave tests for 8 aggregate 

specimens simultaneously. Bottoms of the aggregate specimens covered by porous 

stones were soaked in water bath to ensure the availability of free water. Due to the 

capillary force and suction gradient, free water can reach up to the freezing front 

which is an important condition needed for formation of ice lenses. The testing device 

allowed specimens to uniaxially freeze. Frost heave tests were performed to generate 

the frozen aggregate specimens needed for the MR tests under subfreezing 

temperatures. Side-view of the frost heave setup is shown in Figure 3.17.  

 

 
Figure 3.17 Schematic diagram of frost heave setup (side-view) 

 

Temperatures of the air chamber and water bath were controlled at -4°C and 1°C 

which indicated a temperature gradient of 0.25°C/cm. This temperature gradient was 

obtained by analyzing Alaskan climate data using a geotechnical thermal model 

named Multilayer User-Friendly Thermal Model in 1 Dimension (MUT1D) (Braley 

and Zarling 1990). At side face of specimens, thick insulation was placed to block 

lateral heat transfer. As a result, aggregate specimens were frozen from top to bottom 
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one dimensionally in the vertical direction. The porous stone shown in Figure 3.15 (a) 

was placed at the bottom of specimen to ensure free water uptake. Also, the filter 

paper shown in Figure 3.15 (b) was used to keep fines from flowing out of aggregate 

specimen. Linear variable displacement transducers (LVDTs) (Figure 3.17) were also 

placed at top of aggregate specimens to monitor vertical displacement during the 

freezing process. Frost heave and temperature data were collected electronically by 

installed LVDTs and thermocouples. Figure 3.18 schematically shows a top view of 

the frost heave setup. In order to maintain a constant temperature at the bottom of 

aggregate specimens, heat pipes were placed in the water bath with anti-freezing 

liquid circulation inside.  Figures 3.19 (a) and (b) show the front- and inside- views of 

the frost heave machine, respectively. 

 
Figure 3.18 Schematic diagram of frost heave setup 

 

                                 
         (a) Front view of the frost heave cell         (b) Inside of the frost heave cell 

Figure 3.19 Frost heave test setup 
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When temperatures and frost heave values of aggregate specimens stabilized, the 

frost heave process was considered to be complete. Usually it took 2 days for this 

process. Figure 3.20 shows two aggregate specimens after frost heave testing 

(Aluminum plates were removed).  

 

 
Figure 3.20 Specimens after frost heave test 

 

Due to the temperature of water bath (1 oC), after frost heave test, the bottom of 

specimens in the plastic molds were still unfrozen and specimen could break easily. 

Therefore, aggregate specimens were then moved up to the air chamber in the frost 

heave machine. After a certain time, when totally frozen, specimens were taken out 

and then the molds were removed. 

 
MR Test 

 

Resilient properties of granular materials are significantly affected by freeze-thaw 

cycles during seasonal changes. However, there were limited data regarding MR at 

subfreezing temperatures. Much less data were available for variations of MR after a 

freeze-thaw cycle for frozen aggregate specimens generated in an open system. In 

order to determine seasonal variations of resilient properties, this experimental study 

was conducted to investigate resilient properties of D-1 materials at different 

temperatures, moisture and fines content conditions. Resilient properties were 
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evaluated by repeated loading triaxial test. Figure 3.21 (a) schematically shows the 

setup for the MR tests used in this study and Figure 3.21 (b) shows a photo of the test 

setup. 

 

 
              (a) Schematic plot                                                        (b) Test setup   

Figure 3.21 Repeated loading triaxial test setup 
 

In order to determine resilient moduli at different subfreezing temperatures, 

aggregate specimens after frost heave test were conditioned in the environmental 

chamber to the lowest testing temperature of -10 oC. Usually, 8 hours were spent on 

this conditioning process to ensure sufficient time for aggregate specimens to reach 

thermal equilibrium everywhere. After the temperature of aggregate specimens 

stabilized, specimens were subjected to repeated loading sequences according to 

AASHTO T307 (2002).  

A repeated dynamic haversine loading waveform with a loading duration of 0.1 

sec and a rest period of 0.9 sec was used in MR test to simulate the passing of one axle 

over a pavement followed by a period of rest before the next axle in the field (Figure 

3.22). The maximum load is 10 times as much as the constant contact stress and the 

difference between them is the deviator stress. 
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Figure 3.22 Applied load form in MR tests 

 

Preloading was utilized to reduce the disturbances due to specimen preparation 

procedure and minimize the effects of imperfect contact between end platens and 

specimen (conditioning sequence in Table 3.5). After conditioning, every loading 

sequence was repeated 100 times as long as the permanent strain was within a 5% 

limit (AASHTO 2002). The criterion was used for the entire loading history with 

confining pressure ranging from 3 psi to 20 psi and deviator stress ranging from 2.7 

psi to 36 psi. Table 3.5 shows the loading sequences used in this study, where CP and 

DS represents confining pressure and deviator stress, respectively.  
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Table 3.5 Loading Sequences Used in MR Tests 

Sequence number CP (psi) DS (psi) 
Bulk stress

(psi) 

Contact stress

(psi) 
Loading applications

Conditioning 15 13.5 58.5 1.5 500 

1 2.7 11.7 0.3 100 

2 5.4 14.4 0.6 100 

3 

3 

8.1 17.1 0.9 100 

4 4.5 19.5 0.5 100 

5 9 24 1 100 

6 

5 

13.5 28.5 1.5 100 

7 9 39 1 100 

8 18 48 2 100 

9 

10 

27 57 3 100 

10 9 54 1 100 

11 13.5 58.5 1.5 100 

12 

15 

27 72 3 100 

13 13.5 73.5 1.5 100 

14 18 78 2 100 

15 

20 

36 96 4 100 

 

In order to avoid possible leakage and disturbances of the specimen, air 

temperature was monitored by a thermometer located in the environmental chamber, 

as well as a thermocouple located inside the triaxial cell. The readings from these 

devices were then used to determine if the temperature had stabilized at the target 

temperature. Vertical deformation was monitored by using two LVDTs which were 

mounted on circumferential rings clamped on the specimen. The load was monitored 

with a miniature load cell located on the loading ram outside the triaxial cell. 

When MR tests at the temperature of -10 oC were completed, the temperature in 

the environmental chamber was changed to the next testing temperature, which was -7 
oC. The aggregate specimens were kept in the chamber for another 8 hours to reach 

thermal equilibrium before performing MR tests at the next testing temperature. The 
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same procedures were followed for the MR tests at the sequential temperatures of -5 

oC, -4 oC, -3 oC, -2 oC, and -1oC. When the MR test at the temperature of -1oC was 

completed, the same aggregate specimen was further used for MR test at the room 

temperature of 20 oC. In order to determine the time needed for thawing, the aggregate 

specimen with the internal thermocouple was exposed to ambient room temperature. 

At the center of the aggregate specimen, change of temperature with increasing time 

was plotted as shown in Figure 3.23.  
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Figure 3.23 Temperature vs. time 

 

Based on Figure 3.23, it was found that two hours are needed for completely 

thawing the aggregate specimen. For MR tests after a freeze-thaw cycle, aggregate 

specimens were thawed inside the triaxial cell to eliminating external disturbances 

due to handling and no outflow of water was allowed during thawing. 
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CHAPTER IV 

 

TEST RESULTS AND ANALYSIS 

 

In this chapter, frost heave, MR, and permanent deformation tests results on D-1 

aggregate base course materials from three regions of AKDOT&PF are presented. 

The effects of factors such as temperature, stress state, and moisture and fines 

contents on the MR of D-1 materials from three regions were analyzed. Regression 

models were then developed to correlate the results of MR tests with these influencing 

factors.  

 

Frost Heave Behavior 

 

In order to determine the testing time needed for the freezing process, a pilot frost 

heave test was conducted first. Frost heave value was obtained by placing a LVDT at 

the top surface of an aggregate specimen. Therefore, the vertical displacement at the 

top surface was considered to be the frost heave. Figure 4.1 illustrates a typical curve 

to show the accumulation of frost heave with an increase of time. 

 

 
Figure 4.1 Frost heave vs. time 
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It can be seen from Figure 4.1, in the first 15 hours, frost heave increased quickly 

with time. However, after approximately another 15 hours, frost heave nearly reached 

a constant value. In this study, to ensure sufficient time for frost heave to reach a 

constant value, all D-1 materials from three regions were subjected to a two-day 

freezing process. The moisture and fines contents ranged from 3.3% to 6% and 3.15% 

to 10%, respectively. Temperature gradient applied was maintained at a constant of 

0.25 °C/cm with -4 °C on the top and 1 °C at the bottom. Frost heave results of D-1 

materials with different initial fines and moisture content levels after testing are 

summarized in Tables 4.1~ 4.3. When frost heave tests on D-1 material from 

Southeast Region were conducted, LVDTs had not been installed. Therefore, frost 

heave results for D-1 material from Southeast Region are not available in Table 4.1.  

 

Table 4.1   Frost Heave Test Results on D-1 Material from Southeast Region 

Initial condition 
MC FC 

Change of MC Final MC 

6.00% 10% 1.20% 7.20% 
5.30% 10% 2.40% 7.70% 
3.30% 10% 4.80% 8.10% 
6.00% 8% 1.80% 7.80% 
5.30% 8% 2.30% 7.60% 
3.30% 8% 4.20% 7.50% 
6.00% 6% 1.60% 7.60% 
5.30% 6% 1.40% 6.70% 
3.30% 6% 4.10% 7.40% 
6.00% 3.15% 0.30% 6.30% 
5.30% 3.15% 0.50% 5.80% 
3.30% 3.15% 2.20% 5.50% 
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Table 4.2   Frost Heave Test Results on D-1 Material from Northern Region 

Initial condition 
MC FC 

Change of MC Final MC Frost heave 
(mm) 

6.00% 10% 1.53% 7.53% 2.1 
5.30% 10% 1.82% 7.12% 3.3 
3.30% 10% 4.41% 7.71% 5.1 
6.00% 8% 1.45% 7.45% - 
5.30% 8% 1.74% 7.04% 2.55 
3.30% 8% 4.63% 7.93% 3.42 
6.00% 6% 1.15% 7.15% 1.69 
5.30% 6% 1.69% 6.99% 1.5 
3.30% 6% 4.26% 7.56% 2.68 
6.00% 3.15% 1.13% 7.13% 1.24 
5.30% 3.15% 1.33% 6.63% 0.36 
3.30% 3.15% 3.66% 6.96% 0.34 

 

Table 4.3   Frost Heave Test Results on D-1 Material from Central Region 

Initial condition 
MC FC 

Change of MC Final MC Frost heave 
(mm) 

6.00% 10% 0.38% 6.38% 2.84 
5.30% 10% 1.12% 6.42% 4.83 
3.30% 10% 4.72% 8.02% 5.24 
6.00% 8% 1.46% 7.46% 1.00 
5.30% 8% 1.91% 7.21% 2.08 
3.30% 8% 4.79% 8.09% 2.16 
6.00% 6% 0.53% 6.53% - 
5.30% 6% 1.81% 7.11% 2.5 
3.30% 6% 4.28% 7.58% 1.19 
6.00% 3.15% 1.97% 7.97% 4.24 
5.30% 3.15% 2.12% 7.42% 2.52 
3.30% 3.15% 4.69% 7.99% 0.6 

 

Figure 4.2 illustrates the relationships between final and initial moisture contents 

at different fines contents on D-1 materials from three regions. Final moisture 

contents for D-1 materials after the freeze-thaw cycle were significantly affected by 

initial moisture and fines contents. According to Figure 4.2, aggregate specimens with 

low initial moisture and high fines content led to higher final moisture contents, 
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especially for D-1 materials from Southeast and Northern Regions. Final moisture 

content was highly related to degree of compaction of the aggregate which was 

somewhat controlled by the initial moisture content. At OMC, aggregate reached its 

maximum degree of compaction. Theoretically, aggregate also reached the minimum 

void ratio at OMC. This minimum void ratio provided limited room for water intake 

which could result in the lowest final moisture content. 
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(a) Southeast Region 
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(b) Northern Region 
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(c) Central Region 

Figure 4.2 Final moisture contents after the freeze-thaw cycle at varying initial 
moisture contents  
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In addition, when fines contents were relatively high, aggregate specimens with 

lower initial moisture contents produced high frost heave after testing. Figure 4.3 

illustrates the relationships between frost heave and initial moisture contents at 

different fines contents for D-1 materials from Northern and Central Regions. 

According to Figure 4.3, frost heave of D-1 materials increased with increases of fines 

content. Frost heave data could also be affected by initial moisture contents of D-1 

materials. Low initial moisture and high fines contents produced highest frost heave 

value which correlated with final moisture content results very well. Table 3.1 shows 

that for D-1 materials from three regions with fines content of 10%, percentages of 

grains smaller than 0.02 mm of are greater than 3%. According to Casagrande’s 

(1932) opinion, D-1 materials at fines content of 10% are considered to be frost 

susceptible. However, in Tables 4.2 and 4.3, most of the frost heave values were less 

than 2.5% increase of original specimen height which indicated insignificant frost 

heave. Also, based on visual observation after the freezing process, no visible ice 

lenses were found. In this study, only one temperature gradient (0.25 oC/cm) was 

used. However, temperature gradient could be an important factor which affects frost 

heave of frost susceptible soil (Konrad 1980). Significant frost heave may be expected 

under different temperature gradients.  
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Figure 4.3 Frost heave after the freeze-thaw cycle at varying initial moisture 
contents  

 

Resilient Behavior 

 

MR test results of D-1 materials from Southeast, Northern, and Central Regions are 

summarized in Tables 4.4~ 4.6, respectively. Some specimens collapsed during 

testing at high confining pressure and deviator stress levels. Hence, the corresponding 

testing results were not available in the tables. 
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Table 4.4 MR Test Results on D-1 Material from Southeast Region 
MR(ksi) 10% FC 8% FC 6% FC 3.15% FC 

CP* DS 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 

2.7 6.2 11.5 46.7 5.9 12.7 23.6 5.0 7.8 22.4 5.4 12.2 24.8 

5.4 9.0 13.0 30.8 9.3 14.2 33.5 7.7 10.8 20.6 8.2 14.9 19.4 3 

8.1 11.8 14.5 29.5 12.3 16.2 28.8 10.3 12.0 21.2 11.0 16.7 21.7 

4.5 8.0 11.3 45.7 7.9 19.0 39.8 7.3 8.8 25.3 7.5 12.1 28.3 

9.0 12.4 16.8 39.0 12.9 17.8 35.4 11.2 12.4 26.0 11.8 19.4 28.5 5 

13.5 15.9 18.3 39.5 16.9 19.9 36.4 14.8 14.5 28.1 15.5 20.9 29.1 

9 13.9 19.9 60.0 15.5 22.7 53.5 15.4 20.0 38.9 15.5 27.3 41.1 

18 20.2 23.7 57.4 21.7 26.2 52.1 19.6 19.2 40.5 20.8 28.8 43.4 10 

27 25.0 26.5 56.6 27.1 27.0 51.8 23.6 21.0 42.7 24.8 31.0 44.6 

9 16.8 22.8 84.0 17.8 22.4 73.8 19.4 11.5 50.1 17.9 34.9 53.0 

13.5 18.2 22.6 69.4 19.7 23.4 61.9 19.2 22.4 48.0 17.9 29.1 47.7 15 

27 26.3 28.3 68.3 28.4 22.1 60.8 25.2 27.9 51.4 25.6 36.2 52.0 

13.5 20.7 23.7 85.1 21.9 30.5 78.4 23.5 18.1 58.0 21.5 35.8 61.3 

18 22.5 25.8 79.2 24.5 30.4 71.4 23.8 21.9 57.2 22.5 36.5 58.9 20 

36 26.3 28.0 68.4 28.2 31.3 61.9 26.0 28.6 58.7 25.9 39.3 52.9 

    *CP-confining pressure = σ2= σ3, 

      DS-deviator stress = σ1- σ3, 

      

Table 4.5 MR Test Results on D-1 Material from Northern Region 
MR(ksi) 10% FC 8% FC 6% FC 3.15% FC 

CP DS 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 

2.7 7.5 15.1 19.2 7.2 7.2 22.7 5.5 13.5 16.2 7.1 7.1 19.5 
5.4 9.3 14.0 18.8 8.9 9.6 20.8 8.1 13.5 17.2 8.8 7.4 19.6 3 

8.1 11.0 16.0 21.7 9.5 10.6 22.1 8.8 14.5 19.1 10.7 10.5 20.3 
4.5 11.1 21.4 21.2 8.2 7.8 27.9 8.1 16.1 24.1 7.6 13.3 26.7 
9 13.0 18.7 24.5 10.8 10.3 28.2 9.8 16.4 25.3 10.9 13.4 26.8 5 

13.5 15.0 19.8 27.4 11.5 11.1 30.1 11.6 16.9 26.2 11.6 13.9 26.9 
9 18.8 29.3 37.8 15.7 8.7 44.4 19.7 17.5 40.0 10.0 19.3 41.3 

18 21.4 28.8 34.2 17.3 12.0 44.9 21.3 19.1 39.4 12.5 22.1 40.4 10 

27 25.2 30.4 34.2 19.1 15.5 45.5 24.1 18.0 40.5 - 21.3 39.1 
9 26.3 38.5 41.1 20.8  - 54.7 23.5 17.9 53.5 - 13.1 53.8 

13.5 26.9 33.6 - 21.1 - 51.3 23.3 16.9 45.2 - 18.8 45.6 15 

27 31.7 33.5 - 24.4 - 53.8 27.6 21.4 47.7 - 19.6 46.5 
13.5 35.3 31.8 - 27.1 - 62.1 29.0 21.8 58.8 - 20.7 55.9 
18 36.1 28.8 - 28.0 - 61.2 29.3 22.1 56.2 - 22.7 51.9 20 

36 34.3 29.5  - 26.4 -  56.8 28.4 23.1 55.1  - 23.1 45.6 
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Table 4.6 MR Test Results on D-1 Material from Central Region 
MR(ksi) 10% FC 8% FC 6% FC 3.15% FC 

CP DS 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 

2.7 4.8 10.1 19.8 5.7 11.9 19.4 3.9 14.3 24.3 8.6 14.2 14.5 
5.4 8.5 14.0 20.8 10.3 13.8 18.8 7.1 15.2 22.4 10.8 14.6 17.0 3 

8.1 11.3 16.2 23.5 12.2 16.5 22.3 9.9 17.5 24.2 12.1 16.3 19.5 
4.5 6.6 11.8 25.8 8.0 15.3 21.2 5.5 17.6 26.3 9.6 18.8 24.2 
9 11.5 16.6 28.5 12.4 17.4 25.6 10.4 20.3 28.9 12.8 19.5 25.4 5 

13.5 14.1 20.1 31.3 14.7 21.8 28.9 13.7 20.1 30.6 15.5 19.9 27.9 
9 9.2 18.9 42.6 10.0 - 38.7 9.9 24.3 41.4 16.6 25.4 36.1 
18 15.2 23.4 46.8 16.4 - 40.9 16.1 26.5 45.2 20.1 28.4 36.6 10 

27 19.2 26.6 49.6 20.1 - 45.9 20.0 25.9 46.4 22.4 27.0 37.7 
9 7.3 20.6 56.3 8.7 - 52.4 12.1 22.6 57.1 14.1 24.8 44.8 

13.5 10.8 21.1 54.1 11.5 - 45.5 12.2 24.0 50.5 14.9 26.4 42.6 15 

27 19.3 26.4 59.9 20.1 - 50.1 20.0 29.2 55.3 21.8 31.4 44.7 
13.5 10.2 21.8 67.0 10.6 - 55.4 13.0 30.5 70.3 13.4 33.5 54.2 
18 14.5 21.8 67.1 14.5 - 53.7 14.5 31.1 65.1 16.2 34.0 52.4 20 

36 21.8 25.7 63.3 20.0 - 53.3 20.0 30.3 56.2 23.8 32.1 46.4 

 

Influencing Factors 

 

Moisture content is an important factor which can affect resilient properties of 

granular materials significantly (Vuong 1992, Haynes and Yoder 1963, Hicks and 

Monismith 1971). The results obtained from this study reflected this as well (Tables 

4.4 ~ 4.6). Figures 4.3 and 4.4 illustrates typical results of effect of moisture content 

on resilient properties of D-1 materials with different fines content levels using 

materials from Southeast Region as examples. Effect of moisture content on resilient 

properties of D-1 materials from Central and Northern Regions are shown in 

Appendix D. 
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Figure 4.4 MR at varying moisture contents (FC=10%, Southeast Region) 
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Figure 4.5 MR at varying moisture contents (FC=3.15%, Southeast Region) 

 
It can be seen from Figures 4.4 and 4.5, under different confining pressure levels, 

MR decreased with increase of moisture content. The presence of water had 

lubricating effect on particles. Hence, when moisture content decreased from 5.3% to 

3.3%, MR increased 3 times which was consistent with the conclusions drawn by 

others (Heydinger et al. 1996). Raad et al. (1992) showed that the effect of moisture 
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on the resilient behavior of unbound aggregates is perhaps most significant in well-

graded materials with a high proportion of fines. The loading is really transitory and 

positive pore-water pressure developed by rapidly applied load, which reduced the 

effective stress and resulted in low stiffness and deformation resistance of aggregate. 

The reason for this is water can be more readily held in the pores between aggregate 

particles and undrained condition kept water from flowing out. In this study, three 

moisture content levels used were 3.3%, 5.3%, and 6%. At maximum moisture 

content of 6%, aggregate was not fully saturated. However, significant change of MR 

still existed with an increase of moisture content from 3.3% to 6%. With increase of 

moisture content, under undrained condition, excess pore-water pressure will develop 

due to repeated load. As pore-water pressure develops, effective stress decreases with 

a subsequent decrease of aggregate stiffness. It can be argued that it is not the degree 

of saturation which affected the material behavior but rather that the pore water-

pressure response controlled deformational behavior of aggregate.  

Under the same deviator stress level, Figures 4.6 and 4.7 illustrates typical effects 

of fines content on resilient properties of D-1 materials from Southeast Region with 

different moisture contents at both lower and higher moisture levels as examples. 

Effect of fines content on resilient properties of D-1 materials from Central and 

Northern Regions are shown in Appendix E. 
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Figure 4.6   MR at varying fines content (MC=3.3%, Southeast Region) 
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Figure 4.7   MR at varying fines content (MC=6%, Southeast Region) 

 
Impact of fines content on MR of D-1 materials varied with the moisture content 

(Figures 4.6 and 4.7). At lower moisture content level (3.3% in Figure 4.6), most of 

D-1 materials from Southeast Region with high fines (8 or 10%) contents produced 

higher MR values when compared to those with low fines content (3.15 or 6%). As 

shown in Figure 4.6, highest MR could be found from aggregate specimen with high 

fines content. However, as shown in Figure 4.7, when moisture content was higher 

(6%), impact of fines content was not significant. Impact of fines content for D-1 

materials from Southeast Region is not consistent with those for D-1 materials from 

Central and Northern Region. Therefore, impact of fines content on resilient 

properties of D-1 materials could also be affected by material source. The variation of 

fines content ranging from 2% to 10% was reported by Hicks (1970) to have a minor 

influence on MR of aggregate which was consistent with this study results for D-1 

materials at high moisture content level. Possible reason for this is fines were not 

enough to fill up the voids between gravels and sands, and particle interlock was not 

significantly influenced by the presence of fines. When the load was transmitted via 

coarser particles, smaller number of particle contacts resulted in less total deformation 

and consequently higher stiffness. Hence, there is no drastic change of soil structure 

when fines content is relatively low. With increase of fines content, interlocks 
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between particles were partially eliminated and MR reduced subsequently. However, 

with continuous increase of fines, large particles became suspended in fines and small 

aggregate particles, and interlocks between particles were reduced. Excess fines 

replaced the coarse particles so that the mechanical performance of aggregate 

depended only on the fines. Thus, aggregate stiffness decreased and aggregates 

behaved like pure clay or silt. 

Figures 4.8 ~ 4.11 illustrates typical results of effect aggregate source on resilient 

properties using D-1 materials from three regions with moisture content of 5.3% as 

examples. Effect of aggregate source on resilient properties of D-1 materials at fines 

contents of 6% and 3.3% are shown in Appendix F. 
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Figure 4.8 Comparison of MR of D-1 materials (FC=10%, MC=5.3%) 

 



  51 
  
 

                                                                                  

0

10

20

30

40

50

0 20 40 60 80 100

Bulk stress (psi)

R
es

ili
en

t m
od

ul
us

 (k
si

).

Northern
Cental
Southeast

 
Figure 4.9 Comparison of MR of D-1 materials (FC=8%, MC=5.3%) 
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Figure 4.10 Comparison of MR of D-1 materials (FC=6%, MC=5.3%) 
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Figure 4.11 Comparison of MR between D-1 materials (FC=3.15%, MC=5.3%)  

 

Figures 4.8 ~ 4.11 show that most of the resilient moduli of D-1 materials from 

three regions varied from 10 to 40 ksi with bulk stress ranging from 11.7 to 96 psi. 

However, no clear differences could be found between resilient moduli of D-1 

materials from three regions at different fines content levels. According to previous 

studies (Hicks 1970, Hicks and Monismith 1971, Allen 1973, Allen and Thompson 

1974, Thom 1988, Barksdale and Itani 1989, Thom and Brown 1989), crushed 

aggregates, with angular to subangular shaped particles, provided higher MR than that 

of uncrushed gravels with subrounded or rounded particles. Rougher particle surface 

also contributed to higher MR. D-1 material from Southeast was composed of crushed 

aggregate with 3% percent of flat or elongated particles which is, in some degree, 

different from D-1 materials from Northern and Central Regions of Alaska which are 

mostly composed of subrounded or rounded gravels with no flat or elongated 

particles. Further investigation on the effect of shape and texture of Alaskan 

aggregates on resilient behavior should be considered.  

As described in Chapter II, stress state is another important factor which could 

also affect resilient properties of coarse grained materials. Figures 4.12 ~ 4.15 use D-1 

material from Southeast Region as an example to illustrate the effect of stress state on 

resilient properties.  
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Figure 4.12 Variation of MR at 20 oC (FC=10%, MC=3.3%) 

 

0

10

20

30

40

0 20 40 60

Deviator stress   (psi)

R
es

ili
en

t M
od

ul
us

 (k
si

). CP=3 psi

CP=5 psi

CP=10 psi

CP=15 psi

CP=20 psi

 
Figure 4.13 Variation of MR at 20 oC (FC=10%, MC=5.3%) 
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Figure 4.14 Variation of MR at -1 oC (FC=10%, MC=3.3%) 
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Figure 4.15 Variation of MR at -4 oC (FC=10%, MC=3.3%) 

 
It can be seen from Figures 4.12 ~ 4.15, effect of stress state on resilient properties 

of D-1 materials with temperature ranging from -10 to 20 °C was different. The 

effects of confining pressure and deviator stress varied with change of moisture 

content and temperature conditions. At temperature of 20 °C (Figure 4.12), resilient 

moduli increased with increase of confining pressure when moisture content was 
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relatively low. This was consistent with the conclusions from the previous study 

(Lashine et al. 1971). At higher moisture level (Figure 4.13), impact of confining 

pressure was not as significant as that at low moisture content.  Effects of deviator 

stress varied which was highly dependent on moisture content conditions. When 

moisture content was relatively low, MR decreased slightly as the applied deviator 

stress increased (Figure 4.12). However, when moisture content was raised up to the 

OMC or higher, MR increased with increase of deviator stress (Figure 4.13).   

At subfreezing temperatures, effects of confining pressure and deviator stress 

were found to be different when compared to those at temperature of 20 °C. From 

Figure 4.14, at -1 °C, there is an increase of MR due to the repeated load. However, 

with the increase of deviator stress and repeated loading cycles, resilient moduli 

decreased (Figure 4.14). This may be due to the unfrozen water in frozen aggregate. It 

was stated that as the temperature increases, unfrozen water content increases (Civan 

2000). In addition, repeated load can also raise the unfrozen water content up which 

could result in decrease of the aggregate stiffness. When applied load was not high 

enough to generate significant strain on frozen specimen, with continuous decrease of 

temperature and increase of deviator stress and confining pressure, MR increased 

linearly without significant change of strain as shown in Figure 4.15.  

In order to determine effect of temperature on resilient properties of D-1 

materials, specimens were tested under different temperatures which were -10, -7, -5, 

-4, -3, -2, -1, and 20 °C in one full freeze-thaw cycle. In this study, aggregate 

specimens after frost heave test were firstly frozen to -10 °C. Then, MR tests were 

performed on these specimens from the lowest testing temperature (-10 °C) to the 

warmest testing temperature (20 °C) to simulate the spring thawing process in the 

field during spring thaw. Figures 4.16 ~ 4.18 uses D-1 materials under confining 

pressure of 20 psi and deviator stress of 36 psi as an example to show the effect of 

temperature on MR. 
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Figure 4.16 MR vs. temperature (Southeast Region)  
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Figure 4.17 MR vs. temperature (Northern Region) 
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Figure 4.18 MR vs. temperature (Central Region) 

 

All aggregate specimens showed a high dependence on temperatures. At 

subfreezing temperatures, MR decreased with an increase of temperature. Variation of 

aggregate resilient moduli due to different initial fines and moisture contents were 

inconspicuous at subfreezing temperatures. In another word, effects of initial fines 

and moisture contents were somewhat weakened or even eliminated when aggregate 

specimens were totally frozen. Generally, stiffness of frozen granular materials is 

basically controlled by three components: (1) ice stiffness; (2) aggregate stiffness; and 

(3) aggregate skeleton matrix interaction. Unfrozen moisture content is generally 

expected to be very low and stiffness of aggregate was basically dependent on ice and 

aggregate skeleton stiffness. Results for D-1 materials from Central and Northern 

Regions are pretty close which were nearly 3 times greater than those from the 

Southeast Region. Under frozen conditions, temperature was an important factor on 

resilient properties of aggregate. When the temperature increased from -10 to -5 °C, 

MR of aggregate samples decreased at a considerably low rate. Based on Figures 4.16 

~ 4.18, aggregate MR was considered to remain constant at this temperature range. 

Therefore, ice stiffness, which was significantly affected by temperature, was 

responsible for the change of MR and significant difference of MR between D-1 

materials from three regions. When temperature increased from -5 to 0 °C, the 

unfrozen moisture content was considerably higher. In consequence, influence of 
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unfrozen moisture content to the overall stiffness became more important. With 

continuous increasing of temperature, aggregate stiffness remained stable and 

aggregate skeleton matrix interaction was enhanced due to the repeated load. 

Generally, ice stiffness decreased due to increase of the subfreezing temperature 

which dominated the aggregate MR. Consequently, resilient moduli of the frozen 

aggregate specimens significantly decreased due to the increased temperature. There 

were large drops of MR ranging from -3 °C to 0 °C (Figures 4.16 ~ 4.18) on D-1 

materials from all three regions. However, based on testing results, one can find that 

an unexpected increase of MR at around -3 °C. Two possible reasons are considered to 

be responsible for this phenomenal: (1) due to repeated loading at each temperature, 

creep came up which densified aggregate specimen (Figure 4.19); (2) some of 

released water refreezed during conditioning. Thus, bonding effect was strengthened 

by increase of contact area after conditioning and repeated load. Also, released water 

due to the repeated load resulted in high moisture content. Hence, aggregate strength 

decreased at much higher rate. MR values for granular materials were nearly 

unchanged at nonfreezing temperatures (Simonsen et al. 2002). That was also the 

reason why only one temperature (20 °C) was selected for MR test at nonfreezing 

temperatures.  

 
Figure 4.19 Aggregate structures before and after repeated loading 

 

During seasonal changes, resilient properties of aggregate are significantly 

affected by the freeze-thaw action. It was suggested that the volume of dense 

aggregate might increase due to the freeze-thaw cycle, which would lead to slightly 

looser aggregate structure than before freezing. Thus, a freezing-thaw cycle may 

result in significant reduction of the MR. Freeze-thaw cycle could result in a 
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substantial reduction in MR even without change in moisture condition (Fredlund et 

al. 1975).  

For D-1 materials in Alaska, spring thaw weakening is one of the most common 

distresses for roadways. When warm weather induced thawing from the upper part of 

pavement structure, the frozen aggregate beneath the thawing front can obstruct 

vertical drainage and develop supersaturated conditions. Aggregate strength is 

dramatically reduced owing to the water concentrated above the thawing front. Also, 

vulnerability of the pavement structure increases because of the traffic loads.  

To determine the effect of freeze-thaw cycle on resilient properties of D-1 

materials form the three regions, MR tests at room temperature for aggregate 

specimens experienced a freeze-thaw cycle were performed. For MR tests at room 

temperature on   D-1 materials from Southeast and Northern Regions after the freeze-

thaw cycle, most of specimens collapsed during preloading process. MR test results on 

D-1 material from Central Region after a freeze-thaw cycle are summarized in Table 

4.7. It can be seen from Table 4.7, MR data were significantly reduced when 

compared with those in Table 4.6. Figures 4.20 and 4.21 compare MR results on D-1 

material from Central Region tested at room temperature before and after a freeze-

thaw cycle with fines and moisture contents varying from 3.15% to 10% and 3.3% to 

6%. 
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Table 4.7 MR Test Results after a Freeze-Thaw Cycle (Central Region) 

Confining Pressure (psi) 3.0 5.0 
Deviator Stress (psi) 2.7 5.4 8.1 4.5 9.0 13.5 

Fines Initial Moisture MR (ksi) 
6.0% - - - - - - 
5.3% - - - - - - 10% 
3.3% - - - - - - 

        
6.0% 5.3 8.9 9.5 - - - 
5.3% 3.7 7.0 8.3 4.9 8.2 11.6 8% 
3.3% - - - - - - 

        
6.0% 4.0 6.9 8.0 4.8 8.2 - 
5.3% 4.1 8.4 10.3 5.6 8.8 - 6% 
3.3% 5.1 5.2 - - - - 

        
6.0% - - - - - - 
5.3% 3.7 6.6 6.0 4.4 7.0 - 3.15% 
3.3% 8.8 10.9 12.8 11.3 13.5 15.5 
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Figure 4.20 MR results before and after the freeze-thaw cycle 

(Central, MC= 5.3%, CP = 3.0 psi, and DS = 2.7 psi) 
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Figure 4.21 MR results before and after the freeze-thaw cycle  

(Central, FC = 6%, CP = 3.0 psi, and DS = 2.7 psi) 

 

It can be seen from Figures 4.20 and 4.21, MR results were reduced significantly 

after one freeze-thaw cycle. In Figure 4.20, with the increase of fines content, the MR 

of aggregate after a freeze-thaw cycle decreased due to the high moisture content 

especially when fines content reached 10%. In Figure 4.21, aggregate specimens with 

low initial moisture contents demonstrated high MR reduction after the freeze-thaw 

cycle. Theoretically, for granular materials, with the increase of fines content, the 

capability of holding water was enhanced. Because an open system was used for frost 

heave tests, water intake was allowed during testing. Hence, high fines content 

resulted in high final moisture content after freezing process. Two possible reasons 

may be responsible for the significant reduction of MR after the freeze-thaw cycle. 

Firstly, moisture content of aggregate specimens significantly increased after testing 

due to the free water intake during freezing process. Secondly, freezing of moisture 

enlarged the space between aggregate particles which increased the volume of 

aggregate specimen. Thus, thawing of ice resulted in an increase of void ratio which 

could lead to change of the degree of compaction which is an important factor 

controlling aggregate resilient properties.  
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Permanent Deformation 

 

In this study, by conducting MR tests, permanent deformation data after 15 loading 

sequences were collected on D-1 base course materials from three regions with 

different moisture contents, fines contents, temperatures, and sources. All aggregate 

specimens of D-1 materials from three regions after the freeze-thaw cycle collapsed 

during MR testing. Therefore, permanent deformation is greater than 5% of specimen 

height. Appendix G tabulates the permanent strain data of D-1 materials from three 

regions at different moisture and fines contents. Figures 4.22 illustrate permanent 

deformation of D-1 materials from three regions at different moisture and fines 

contents.  
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(a) Central Region 
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(b) Southeast Region 
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(c) Northern Region 

Figure 4.22 Permanent strains at different fines and moisture contents  

 

As can be seen in Figure 4.22, permanent strain was highly dependent on moisture 

contents. At each fines content level, higher moisture content produced higher 
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permanent strain compared to those at low moisture contents. This is reasonable since 

suction essentially works as a neutral confining stress. The lower the moisture 

content, the higher suction is, and subsequently the higher equivalent confining effect 

and lower permanent deformation. Variation of permanent deformation due to 

different fines content is insignificant in Figure 4.22 for D-1 materials from three 

Regions. One possible reason is fines ranging from 3.15% to 10% were not enough to 

fill up the voids between gravels and sands, and particle interlock was not 

significantly influenced by the presence of fines. In other words, aggregate strength 

was still controlled by the interlock between particles. With increase of fines content, 

specific surface area of D-1 materials increased and some water was absorbed by 

increased fines as well. Huurman and Molenaar (2006) stated that permanent 

deformation of unbound materials at a given stress state was highly affected by 

physical parameters such as gradation, mixture composition, angularity of the 

particles, and the degree of compaction. In this study, effect of fines content on 

permanent deformation was also affected by moisture content and angularity of D-1 

materials. Effect of fines (ranging from 3.15% to 10%) can not be easily separated 

from the other factors. According to Figure 4.22, permanent strain on D-1 materials 

did not vary very much at different fines contents with moisture content of 3.3%. 

Reason for this is the angularities of D-1 materials from three regions were similar.  

Permanent deformation of soil is somewhat related to its resilient behavior. 

Zlender (2008) stated that permanent deformation was a function of MR and stress 

states. At subfreezing temperatures, due to the bonding effect of ice, D-1 material has 

very high stiffness and correspondingly smaller permanent deformation after the 

certain loading sequences used in triaxial test. Effect of temperature on permanent 

deformation was shown in Figure 4.23 using D-1 materials from three regions at fines 

content of 6% and moisture content of 5.3% as an example. As can be seen in Figure 

4.23, permanent deformation increased with an increase of temperature, especially 

when temperature was close to 0 oC. All permanent deformations at subfreezing 

temperatures were insignificant (less than 0.5%). 
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Figure 4.23 Permanent strains at different temperatures  

 

MR Modeling 

 

Based on discussions above, it was found that moisture content, fines content, 

temperature, stress state, and freeze-thaw cycle could affect resilient properties of D-1 

materials. Initially, an attempt was made to use all MR values from three regions to 

develop a model valid at all temperatures. However, this was proved unsuccessful 

owing to the change of moisture content after freezing process and the significant 

change of MR around 0 °C. As a consequence, resilient responses of aggregates above 

and below 0 °C were analyzed separately.  

In this study, Equation 2.8 from the MEPDG (ARA, Inc. 2000), was chosen as a 

base model for regression analysis on MR data of D-1 materials tested at temperature 

of 20 °C. The nonlinear elastic coefficients and exponents of the constitutive model 

are determined by using nonlinear regression analyses to fit laboratory generated MR 

test data. In this base model, MR was a function of bulk stress and octahedral shear 

stress. To determine ki, regression analysis on MR data of D-1 materials tested at 

temperature of 20 °C was performed. The obtained ki are required input parameters 

for pavement design software of MEPDG. For D-1 materials in Alaska, stress state, 

temperature, freeze-thaw cycle, and moisture content were found to be the most 
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important influencing factors which can affect resilient behavior of D-1 materials. 

Effect of freeze-thaw cycle on material behavior was substantial for D-1 materials. 

However, MR data for D-1 materials after the freeze-thaw cycle were very limited. 

Therefore, regression analysis of MR at 20 °C was performed only on D-1 materials 

without the freeze-thaw cycle. Since the particle size distribution curves of three D-1 

materials were very close and effect of aggregate source was not significant, gradation 

and aggregate source were not introduced into the relationship between ki and soil 

physical properties. Within the scope of this study (fines content ranging from 3.15% 

to 10%), fines content was a very important parameter which affected soil frost heave 

susceptibility. Also, fines content controlled the aggregate ability to support vehicle 

load, especially during spring thaw. Therefore, fines content was introduced into 

regression. Based on data analysis, effect of fines content on resilient properties of D-

1 materials could be affected by moisture content. Therefore, interaction between 

fines and moisture content was also introduced into the regression. Since MR results 

of aggregate specimens from three regions are very close, MR results of D-1 materials 

from different regions were combined together to develop a comprehensive model for 

MR prediction. The constitutive model was modified which is shown in Equation 4.1.  
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         (4.1) 

where, 

fc    =   fines content, 

sW   =   moisture content, and  

ci       =  regression constants. 

 

Both fines and moisture content are in decimal in Equation 4.1. Multiple nonlinear 

regressions were performed between MR data and basic aggregate properties as well 

as stress conditions. The Matlab software was used for this multiple nonlinear 

regression. Detailed regression procedure is shown in Appendix H. The dependent 
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variable was MR and four independent variables were fines content, moisture content, 

bulk stress, and deviator stress. Regression results are shown in Equations 4.2 ~ 4.4. If 

fines and moisture contents were given, ki coefficients can be obtained according to 

Equations 4.2 ~ 4.4. Figure 4.24 compares the predicted MR based on Equation 4.2 

and measured MR values from laboratory tests. A R2 of 89.3% indicated a good 

correlation between predicted and measured results. 

 

1 2.54 5.37* 32.56* 72.76* *c s s ck f W W f= + − −       (4.2)      

2 1.04 3.54* 10.70* 71.19* *c s s ck f W W f= + − −  (4.3)      

2 2.19 1.54* 44.36* 49.18* *c s s ck f W W f= − + + −  (4.4) 
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Figure 4.24 Predicted vs. measured MR at 20 °C 

 

Simonsen et al. (2002) proposed an equation to predict MR of granular materials at 

subfreezing temperatures, as expressed by Equation 2.9. Temperature is the only 

independent parameter in that model. However, after analyzing the effects of 

confining pressure and deviator stress at subfreezing temperatures, it was found that 

deviator stress is an important influencing factor on resilient properties of D-1 

materials. Consequently, to provide better prediction, deviator stress should be 
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incorporated into Equation 2.9. As discussed before, ice stiffness, aggregate stiffness, 

and aggregate skeleton matrix interaction are the three components responsible for the 

resilient properties of granular material. Furthermore, for D-1 materials, variations of 

final moisture contents after the freeze-thaw cycle are not significant. However, 

abrasion resistance, which was related to aggregate roughness and stiffness, was 

considered to be a proper parameter to represent the aggregate type at subfreezing 

temperatures. Thus, on the basis of Simonsen et al’s (2002) model, the factor of 

abrasion resistance was also introduced to this modified model as shown in Equation 

4.5.  

 

31 2 4/k Tk k k
R r dM A e σ+=                                                     (4.5) 

 

where,  

Ar    =   abrasion resistance (percentage loss) obtained by using Micro-Deval tester. 

Multiple linear regressions on MR test results of D-1 materials from three regions 

were performed. Equation 4.6 expresses the MR prediction of D-1 materials under 

subfreezing temperatures. 

 
0.0371 4.1014 0.7054/ 0.7346 ( 1 10 )T o o

R r dM A e C T Cσ− += − < < −                   (4.6)  

 

Predictive models for MR of D-1 granular materials from three regions of Alaska 

can be summarized as follows. 

 

when T > 0 °C, 
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when -1°C > T > -10 °C, 
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0.0371 4.1014 0.7054/ 0.7346 (0.027 0.097, 2.7 36 )T
R r d r dM A e A psi psiσ σ− += < < < < . 

 

where,  

RM  =  resilient modulus, ksi,  
cf  =  fines content (decimal), 
sW  =  moisture content (decimal), 

θ   =  1 2 3σ σ σ+ + , psi, 

1 2 3, ,σ σ σ  =  principle stresses, psi, 

ap  =  normalizing stress (atmospheric pressure, 14.5 psi), 

octτ  =  octahedral shear stress 2 2 2
1 2 1 3 2 3

1 ( ) ( ) ( )
3

σ σ σ σ σ σ= − + − + − , psi, 

rA  =  abrasion resistance (decimal), 
T  =  temperature, degree Celsius, and 

dσ  =  deviator stress, psi.
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CHAPTER V 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

To determine the impact of fines content on resilient modulus reduction of base 

courses during thawing, frost heave and repeated-load triaxial tests were performed on 

D-1 granular base course materials from three regions (Northern, Southeast, and 

Central Regions) of AKDOT&PF with different fines and moisture contents, under 

different temperature and freeze-thaw conditions. After testing, frost heave, MR and 

permanent deformation test results were obtained and analyzed. To incorporate into 

MEPDG, regression analysis was also performed on MR data of D-1 materials tested 

at 20 oC without the freeze-thaw cycle. The ki coefficients obtained from regression 

are required for pavement design by using MEPDG software. For regression analysis 

on MR data of D-1 materials tested at subfreezing temperatures, a modified model was 

developed for MR prediction. 

 

Conclusions 

 

The conclusions are listed as follows: 

1. After the freezing process in an open system, aggregate specimens with low 

initial moisture and high fines content led to higher final moisture contents. 

Final moisture content was highly related to the initial moisture content of 

aggregate specimen. Frost heave of D-1 materials increased with increases of 

fines content after the freezing process. Frost heave data could also be affected 

by the initial moisture contents of D-1 materials. Low initial moisture and high 

fines contents produced highest frost heave value which correlated with change 

of moisture content after the freezing process very well. In this study, frost 

heave data of all D-1 materials was not significant. Significant frost heave may 

be expected under different temperature gradients.  

2. When moisture content increased from 3.3% to 6%, pore-water pressure 

developed during MR test under undrained condition. The developed pore-water 

pressure resulted in a reduction of effective stress. Also, increased moisture 
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content enhanced the lubricating effect. Subsequently, MR data for D-1 materials 

from three regions decreased due to increased moisture content. 

3.  Within the scope of this study (fines content ranging from 3.15% to 10%), 

impact of fines content on resilient properties of D-1 materials varied and was 

affected by moisture content and material source. For D-1 material from 

Southeast Region, at lower moisture content, most of with high fines contents 

produced higher MR values when compared to those with low fines content. 

With the increase of moisture content, impact of fines content became 

insignificant. In addition, fines content had different influences on D-1 materials 

from different regions.  

4.  Resilient behavior of D-1 materials were affected by temperature and deviator 

stress. At room temperature, MR of D-1 materials from three regions increased 

with increase of confining pressure when moisture contents ranged from 3.3% to 

6%. However, when other conditions were the same, at low moisture content, 

MR decreased as the applied deviator stress increased. When moisture content 

was at the optimal moisture content or higher, MR increased with increase of 

deviator stress. However, effect of confining pressure became insignificant for 

D-1 materials at high moisture content. At subfreezing temperatures, within the 

scope of this study (confining pressure ranging from 3 psi to 20 psi), the 

confining pressure did not provide significant effect on resilient modulus values.   

5. When temperature increased from -10 to 0 °C, the unfrozen moisture content 

increased as well. Due to increased unfrozen water content, MR data of D-1 

materials from three regions decreased with an increase of temperature, 

especially when temperature ranged from -5 to 0 oC.  

6. After the freeze-thaw cycle, aggregate specimens were weakened and most of 

specimens collapsed during the MR test. Therefore, MR data of D-1 materials 

from three regions could not be obtained. From limited MR data for D-1 

materials from Central Region, it was found that freeze-thaw cycle resulted in 

significant reduction of MR values when compared to those of aggregate 

specimens without the freeze-thaw cycle. 

7. Permanent strain was significantly affected by moisture content. Higher moisture 

content produced higher permanent strain. Effect of fines content on permanent 
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strain of D-1 materials was affected by moisture content and material source. 

Also, at subfreezing temperatures, permanent deformation increased with as 

increase of temperature, especially when temperature was close to 0 oC.  

8.  Regressions were performed on MR data of D-1 materials from three regions 

tested under frozen and unfrozen conditions for MR prediction of D-1 materials 

at different temperatures, moisture contents, and fines contents. Fines content, 

moisture content, and the interaction between them were introduced into the 

model specified in MEPDG to correlate with ki coefficients which are required 

for flexible pavement design by the MEPDG software. A modified model was 

also developed for MR prediction of D-1 materials at subfreezing temperatures. 

In this model, MR of D-1 material was a function of temperature, deviator stress, 

and abrasion resistance of aggregates. 

 

Recommendations 

 

In this study, frozen D-1 material specimens were prepared using the one-dimensional 

frost heave cell for MR tests at subfreezing temperatures. An open system was used in 

which aggregate specimens had free access to water from the bottom during the 

freezing process. The frozen D-1 material specimens were then tested to measure the 

MR under different subfreezing temperatures and after the freeze-thaw cycle. 

However, during the MR testing process, most of D-1 material specimens failed after a 

freeze-thaw cycle before any further data were generated. As the open system of 

water access represents the worst scenario that a pavement structure could possibly 

experience, it is necessary to investigate the behavior of base course materials under 

other conditions with limited water access during freezing in order to complement the 

existing research and have a better understanding of the combined effect of fines 

content and moisture content on the resilient behavior of D-1 materials under different 

conditions of water access.  

According to Casagrande’s criteria (1932), D-1 materials from three regions with 

a fines content of 10% were all slightly frost susceptible (because % finer than 20 um 

varied from 3.1% to 4.2% which are greater than 3%). However, this study did not 

show significant frost heave for those materials with high fines. One of the possible 
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reasons was that only one temperature gradient (0.25 oC/cm) was used. Previous 

studies indicated that temperature gradient was a very important factor which could 

affect frost heave behavior of soil. Therefore, different temperature gradients are 

suggested for specimen preparation in future studies to better correlate the effect of 

fines content, frost heave and resilient behavior of these granular materials.  

Physical properties such as abrasion resistance, flat and elongated particles, and 

fractured surface of aggregates can greatly affect the resilient behavior of granular 

materials. However, in this study, variations of MR data due to different aggregate 

sources were not significant. A possible reason for this was that the physical 

properties of D-1 materials used in this study were similar. Therefore, more tests for 

D-1 materials from different sources are needed to characterize the effect of fines 

content on resilient behavior of D-1 materials.  
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Appendix A 
 

 
Table A.1 Original Gradations of D-1 Materials from the Three Regions 

 
Northern Region 

(Fairbanks) 
Central Region 

(Anchorage) 
Southeast Region 

(Juneau) 
LL* PI LL PI LL PI 

0 0 0 0 0 0 
Size (mm) % passing Size (mm) % passing Size (mm) % passing 

25 100 25 100 25 100 
19.05 97.6 19.05 99.6 19.05 100 
9.5 74.2 9.5 72.6 9.5 69.1 
4.75 47.3 4.75 50 4.75 41.8 
2.36 30.4 2.36 37.5 2.36 25.4 
0.3 11.2 0.3 9.9 0.3 8.1 

0.075 2.7 0.075 2.9 0.075 3.9 
0.0344 1.1993 0.0332 1.4536 0.0323 1.9169 
0.0224 0.9423 0.0214 1.2719 0.0214 1.3179 
0.0135 0.514 0.0127 0.9994 0.0126 1.0783 
0.0097 0.4283 0.0091 0.9085 0.009 0.9585 
0.0069 0.4069 0.0065 0.7722 0.0064 0.8386 
0.0034 0.3855 0.0033 0.5451 0.0032 0.599 
0.0014 0.1713 0.0014 0.4088 0.0014 0.2396 

 
* LL  - liquid limit 
   PI   - plastic index 
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Appendix B 
 
 
 

Table B.1 Gradations of D-1 Materials Used in This Study 
 

Sieve size (mm) % passing 
19.05 100 100 100 100 
9.5 72.36 73.17 73.74 74.31 
4.75 46.65 48.22 49.32 50.42 
2.36 31.28 33.3 34.72 36.14 
0.3 9.8 12.45 14.31 16.18 

0.075 3.15 6 8 10 
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Appendix C 
 
 

Table C.1 Detailed Compaction Test Results 
 

Central Region Southeast Region Northern Region 
Fines 

content 
Moisture 
content 

(%) 

Dry 
density 
(pcf) 

Moisture 
content (%) 

Dry 
density 
(pcf) 

Moisture 
content 

(%) 

Dry 
density 
(pcf) 

5.0 143.16 4.2 152.23 4.2 138.26 
5.4 144.68 4.8 154.68 4.8 140.58 
5.8 146.54 5.2 155.96 5.2 141.39 
6.3 145.57 5.5 155.47 5.6 141.19 

3.15% 

6.8 145.02 6.0 153.31 6.0 140.9 
4.5 144.87 4.3 151.53 4.2 142.94 
5.2 146.83 4.9 154.68 4.8 145.32 
6.0 147.86 5.3 156.18 5.2 146.07 
6.6 147.14 5.7 155.87 5.7 145.39 

6% 

7.3 145.49 6.2 155.41 6.3 145.16 
4.6 146.88 4.5 153.17 4.3 143.7 
5.2 150.1 5.0 155.43 4.9 146.78 
5.8 149.98 5.4 156.47 5.3 148.01 
6.6 146.95 5.8 156.67 5.8 147.16 

8% 

- - 6.5 154.65 6.4 145.34 
4.6 149.29 4.6 155.31 4.4 144.52 
5.2 151.06 5.2 156.83 4.9 147.92 
5.9 150.45 5.8 156.83 5.3 148.10 
6.6 148.74 6.4 155.09 5.8 146.89 

10% 

7.1 146.26 6.9 153.26 6.4 145.44 
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Appendix D 
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Figure D.1 MR at varying moisture contents (FC=8%, Southeast Region)  
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Figure D.2 MR at varying moisture contents (FC=6%, Southeast Region)  
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Figure D.3 MR at varying moisture contents (FC=10%, Northern Region)  

0

20

40

60

80

1 2 3 4 5

Confining pressure (psi)

R
es

ili
en

t m
od

ul
us

 (k
si

). MC = 6%
MC = 5.30%
MC = 3.30%

3 2015105

 
Figure D.4 MR at varying moisture contents (FC=8%, Northern Region)  



  85 
  
 

                                                                                  

0

20

40

60

80

1 2 3 4 5

Confining pressure (psi)

R
es

ili
en

t m
od

ul
us

 (k
si

).

MC = 6%
MC = 5.30%
MC = 3.30%

3 2015105

 
Figure D.5 MR at varying moisture contents (FC=6%, Northern Region)  
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Figure D.6 MR at varying moisture contents (FC=3.15%, Northern Region) 
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Figure D.7 MR at varying moisture contents (FC=10%, Central Region) 
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Figure D.8 MR at varying moisture contents (FC=8%, Central Region)  
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Figure D.9 MR at varying moisture contents (FC=6%, Central Region)  
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Figure D.10 MR at varying moisture contents (FC=3.15%, Central Region) 
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Appendix E 
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Figure E.1 MR at varying fines contents (MC=6%, Northern Region) 
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Figure E.2 MR at varying fines contents (MC=3.3%, Northern Region) 
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Figure E.3 MR at varying fines contents (MC=6%, Central Region) 
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Figure E.4 MR at varying fines contents (MC=3.3%, Central Region) 
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Appendix F 
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Figure F.1 Comparison of MR for D-1 materials (FC=10%, MC=6%) 
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Figure F.2 Comparison of MR for D-1 materials (FC=8%, MC=6%) 
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Figure F.3 Comparison of MR for D-1 materials (FC=6%, MC=6%) 
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Figure F.4 Comparison of MR for D-1 materials (FC=3.15%, MC=6%) 
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Figure F.5 Comparison of MR for D-1 materials (FC=10%, MC=3.3%) 
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Figure F.6 Comparison of MR for D-1 materials (FC=8%, MC=3.3%) 
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Figure F.7 Comparison of MR for D-1 materials (FC=6%, MC=3.3%) 
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Figure F.8 Comparison of MR for D-1 materials (FC=3.15%, MC=3.3%) 
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Appendix G 

 
Table G.1 Permanent Strain of D-1 Materials from three regions 

Permanent strain (%) 
10% fines 8% fines 6% fines 3.15% fines Material 

source 
6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 6% 5.3% 3.3% 

Central 2.95 0.60 0.27 2.73 0.65 0.40 2.50 0.43 0.33 1.50 2.30 0.50 
Southeast 2.25 1.47 0.20 1.77 0.80 0.40 1.14 1.40 0.30 2.40 0.45 0.33 
Northern 0.76 0.47 0.60 0.56 - 0.35 0.85 1.00 0.43 2.20 1.30 0.51 
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Appendix H 
 

To perform the regression on MR results of D-1 materials at room temperature by 

Matlab, the following procedures could be followed. 

 

1) create a **.m file with codes as: 

function yhat = **(beta,x) 

yhat = myfun(beta, x); 

2) define “x”, “y”, and “beta0” 

3) call the nonlinear regression command as: 

Beta = nlinfit(x,y,'**',beta0)； 

where, 

**        = file name, 

beta     = regression coefficients, which are ki in this study, 

x          = matrix of independent variables, which are fines content, moisture content, 

bulk stress, and deviator stress in this study, 

myfun = is a mathematical expression of regression equation, which is Equation 4.1 in 

this study,  

y         = column vector of dependent variable, which is MR in this study, and 

beta0  = column vector with initial guesses of beta. 
 


	 
	 
	 



